ПОВЫШЕНИЕ КАЧЕСТВА П-ОБРАЗНЫХ ПОКОВОК ИЗ СПЛАВА ОТ4-1
БЕЗ ИЗМЕНЕНИЯ ПРИМЕНЯЕМОЙ ОСНАСТКИ

П.А. Головкин, к.т.н.
АО «Плутон», 105120, Россия, г. Москва, ул. Нижняя Сыромятническая, д. 11.
p.golovkin@pluton.msk.ru; тел.: (495) 730-36-19

IMPROVING THE QUALITY OF “П”-SHAPED FORGINGS MADE OF “OT4-1”
ALLOY WITHOUT CHANGING THE TOOLING USED

P.A. Golovkin, Ph.D. in Engineering Science
Pluton JSC, 105120, Russia, Moscow, Nizhnyaya Syromyatnicheskaya st.
p.golovkin@pluton.msk.ru; phone: (495) 730-36-19

Аннотация
Путём математического моделирования и металлографического анализа
исследуются возможности повышения качества П- образных поковок из титанового
сплава OT4-1 при минимальных затратах. Показано, что управление температурой
деформации и схемой формообразования являются эффективными и простыми
способами повышения качества материала получаемых штампованных поковок.

Ключевые слова: титановый сплав, температура, деформация, материал
поковки, трещиностойкость, типы структуры, размеры зерна, ковка, штамповка.

Annotation
By means of mathematical modeling and metallographic analysis, the possibilities of
improving the quality of П- shaped (in form of the Russian alphabetic character «П») forgings
made of titanium alloy OT4-1 at minimal cost are investigated. It is shown that the control of
the deformation temperature and the shaping scheme is an effective and simple way to
improve the quality of the material of the resulting stamped forgings.

Keywords: titanium alloy, temperature, deformation, forging material, crack
resistance, structure types, grain sizes, forging, stamping.

Общие положения
Высокие значения теплопередачи при относительно низкой теплопроводности
[1], предопределяют склонность к локализации горячих деформационных процессов и
крайнюю их неравномерность в заготовках из титановых сплавов. Поэтому кованые, и
в особенности, штампованные заготовки часто не соответствуют заданным
требованиям в части размера зерна и типа структуры.
Такие способы горячей деформации титановых сплавов, обеспечивающие заданную равномерность свойств материала получаемых заготовок, как изотермическая штамповка, отличаются высокой трудоёмкостью и требуют специального оборудования и сложной оснастики.

Для определения экономичных режимов горячей деформации заготовок из титанового сплава OT4-1, на примере типовой П-образной поковки типа кронштейн оценивается применение прямых и деешевых приёмов управления формой заготовки и температурой её деформации, с применением лишь деешевой открытой одноручевой штамповой оснастики и универсального штамповочного оборудования.

Вид и основные размеры штампованной поковки типового П-образного кронштейна представлены на рисунке 1. Поковка имеет переменное отношение высоты ребра к толщине полотна H/h, составляющее от 1,6 до 4,3, что делает её типовой. Технологичность получаемой изштампованной поковки чистовой детали кронштейна обеспечивается соответствием её конфигурации требованиям ОСТ 92-9693-91 [2].

Экспериментальная часть

Исследован процесс горячей объемной штамповки типовых П-образных кронштейнов из среднепрочного псевдо-α сплава OT4-1 на гидравлическом аккумуляторном прессе с максимальным усилием 50 МН при скорости перемещения подвижной траверсы в зависимости от величины нагрузки от 50 до 20 мм/с. Отрезаемые от поставляемого по ОСТ 1.90266 [3] исходного прутка заготовки протачивались с шероховатостью не хуже Rz 3,2 в размер Ø 90×200 мм, снимались фаски 5×45°.
Микроструктура прутков отвечала типам 1…6, размер зерна не превышал балла 6 [3, 4]. Нагрев заготовок до верхнего предела рекомендованной ОСТ 92-1185 [5] температуры (910 °C), производился в открытой газовой печи. Горячная заготовка укладывалась в чистовой ручей предварительно разогретого в электрической печи с выкатным подом до 400 °C штампа, разработанного в соответствии с ОСТ 92-3980 [6]. Смаэка штампового знака осуществлялась путём укладки стеклоткани и нанесения маслораздаточной смеси. Готовые поковки охлаждались не вклад на шамотном полу.

Моделирование производилось с применением построенного на методе конечных элементов программного продукта. Для штамповки на паровоздушном арочном молоте с массой падающих частей 1,0 т. с нагрева до 910 °C использовалась полученная из цилиндрической заготовки Ø 110×135 мм поковка с размерами 60×150×200 мм. Исходя из производственного опыта, в силу стремления понизить разогрев и неравномерность деформационных процессов [7, 8], штамповка осуществлялась с нагрева заготовки до 880 °C, рекомендуемой действующими отраслевыми стандартами как оптимальная [5].

Результаты и их обсуждение
Формообразование штампованной поковки при базовой технологической схеме включает в себя три основные части. Первая – плющение (осадка на плашку) исходной прутковой заготовки, вторая – формирование основной части фигуры поковки, и третья – окончательное оформление её углов и рёбер, при заполнении обвойной канавки штампа. Положение заготовки в штампе и распределение накопленных деформаций и температур при её плющении показаны на рисунке 2.

Такая простая схема, однако, имеет несколько недостатков. А именно: при плющении материал заготовки длительное время контактирует с материалом инструмента, при этом быстро охлаждаясь. Большая теплопередача при малой теплопроводности быстро понижает пластические свойства прилегающего к инструменту материала, охрупчивая его и образуя на поверхности заготовки множественные надрывы. Как следствие, деформация быстро локализуется в срединных областях заготовки, вовлекая туда передаваемую усилием пресса энергию, и закладывая предпосылки для образования нежелательной структуры материала. Постепенно заполняя рабочие полости штампа и приближаясь к своей конечной форме, приобретая силовые рёбра будущей детали, одновременно заготовка усугубляет неравномерность характеристик своего материала.
Рис. 2. Накопленные деформации и поля температур при плющении заготовки в начале штамповки в поперечном (вверху) и продольном (внизу) сечениях.

Figure 2. Accumulated deformations and temperature fields during flattening of the billet at the beginning of forging in cross (top) and longitudinal (bottom) sections.

Так, в середине её поперечного сечения зона локализованных деформаций формирует подобную линзу область с высокой температурой и значительными сдвиговыми деформациями. Распределение деформаций и температур в этот период формирования поковки показаны на рисунке 3. На рисунке видно, что линза деформации усугубляется по мере формирования поковки, изменяя её структуру в нежелательном для трещиностойкости направлении. Далее во время заполнения облойных канавок, на фоне резкого роста сопротивления материала деформированнию, заполняются углы рабочего профиля штампа, и поковка приобретает свой законченный вид, как это показано на рисунке 4.

Сведя расчётные данные полей температур по этапам формирования штампованых поковок в таблицу 1 и сравнив их с распределением полей температур на рисунках 2…4, можно выявить следующее.
Рис. 3. Распределение накопленных деформаций и полей температур в процессе формирования силовых рёбер поковки.
Fig. 3. Distribution of accumulated deformations and temperature fields during the formation of the forging force ribs.

Рис. 4. Распределение накопленных деформаций и полей температур в момент завершения формирования поковки и заполнения облойной канавки.
Fig. 4. Distribution of accumulated deformations and temperature fields at the time of completion of forging formation and filling of the hollow groove.
Таблица 1.
Значения температур в процессе формообразования поковки по шагам

Table 1.
Temperature values in the process of forming forgings in steps

<table>
<thead>
<tr>
<th>№ шага</th>
<th>Температура поковки, °C</th>
<th>№ шага</th>
<th>Температура поковки, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>max</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>974</td>
<td>560</td>
<td>130</td>
</tr>
<tr>
<td>150</td>
<td>1000</td>
<td>554</td>
<td>150</td>
</tr>
<tr>
<td>170</td>
<td>1010</td>
<td>554</td>
<td>170</td>
</tr>
<tr>
<td>190</td>
<td>997</td>
<td>546</td>
<td>190</td>
</tr>
<tr>
<td>215</td>
<td>1010</td>
<td>546</td>
<td>215</td>
</tr>
<tr>
<td>220</td>
<td>1020</td>
<td>528</td>
<td>220</td>
</tr>
<tr>
<td>240</td>
<td>1030</td>
<td>512</td>
<td>240</td>
</tr>
<tr>
<td>260</td>
<td>1147</td>
<td>509</td>
<td>260</td>
</tr>
<tr>
<td>294</td>
<td>1160</td>
<td>502</td>
<td>294</td>
</tr>
</tbody>
</table>

Вначале превращения заготовки в поковку области локализованных деформаций и наибольших температур совпадают с максимальной по заготовке в целом, то есть воздействуют непосредственно на материал будущей детали. Далее, наибольшие температуры наблюдаются уже в зоне удалаемого облова, где деформационный разогрев металла уже не так опасен. Оценивая изменяющиеся температуры материала заготовки, важно сравнивать их с промежутком превращения (α+β)→β, для сплава ОТ4-1 составляющего 900...940 °C [9], когда даже небольшой перегрев переводит деформацию в β- область, ухудшая ее трещиностойкость [10].

Из таблицы 1 следует, что использование приближённой к проекции рабочего профиля штампа кованой заготовки и снижение температуры её нагрева с 910 °C до 880 °C существенно снижает неравномерность распределения полей деформаций и температур. Так, разброс максимальных и минимальных температур снижается с 658 до 607 °C, а их наибольшие значения с 1160 до 1090 °C. Помимо этого, разброс значений накопленной материалом штамповки деформации сократился до 4.07 (1.4...5.7) против 4,64 (1,4...6,5) при базовой технологии. Следует также отметить, что понижение температуры нагрева уменьшает максимальные температуры материала поковки в ходе её оформления довольно резко, в то время как уровень наименьших температур снижается не так заметно. Металлография поковок также показала, что подъём температуры материала заготовки до 1020...1040 °C при штамповке приводит к несоответствию типов структуры и размера зерна материала заданным требованиям.
<table>
<thead>
<tr>
<th>Тип 3</th>
<th>Тип 4</th>
<th>Тип 5-6</th>
<th>Тип 7-8</th>
<th>Тип 9</th>
</tr>
</thead>
</table>

Рис. 5. Смена типов структур материала поковок по мере роста температур.
Увеличение 400° (тип 3…6), 250° (тип 7…9)

Figure: 5. Changing the types of structures of the material of forgings with increasing temperatures. Magnification 400° (type 3 …6), 250° (type 7…9).

Высокая неравномерность деформационных процессов при изготовлении штамповок, сильно затрудняет выполнение таких требований. Поэтому обычно в КД на поковки и штамповки допускаются структуры 1…6 типов и области с преобладанием 7 типа, если они находятся в зонах удаляемого технологического припуска. Тип 3 шкалы отвечает мелкозернистой, в большей или меньшей степени равноосной структуре, тип 4 — переходной структуре от мелкозернистой к крупнозернистой, типы 5 и 6 — перегретой структуре с умеренной величиной зерна, но при этом грубыми пластиниками субструктуры [12]. Типы 7…9 представлены структурами с ещё более крупным зерном и тонкопластичной структурой, снижающей характеристики пластичности и трещиностойкости, и потому принятые недопустимыми [4, 12].
Вблизи поверхности материал поковок представлен микроскопической (α+β)-структурой 4 типа [4] с величиной зерна 3...5 мкм. Далее, если в зонах с допустимой температурой материала структура представлена мартенситным и глюбулярными типами с величиной зерна 30...50 мкм (5 тип для сплава OT4-1, макроструктура 1 балла [4]), то в зонах деформационного перегрева наблюдается крупнозернистая β-предварительная структура недопустимых [4] 8 и 9 типов при размере зерна 5...7 балла.

Использование прямоугольной в плане кованой заготовки и снижение температуры нагрева, уменьшая неравномерность деформационных процессов и деформационный разогрев, изменяет структуру и свойства материала поковки. Так, пластинчатая структура даёт большую вязкость разрушения, нежели глюбулярная, но при этом несколько худшие пластичность и стойкость к развитию усталостных трещин [13]. При этом важно учесть, что разброс значений сопротивления усталости у титановых сплавов значительно больше, чем у сложнолегированных сталей. Так, для отожжённых титановых сплавов корреляция между пределом выносливости и пределом прочности сильно колеблется и составляет συ/συ=(0,47...0,62) [13], а значит, тип структуры и размер зерна титановых сплавов сильно влияют на эти их свойства.

Отдельно следует отметить, что максимальный размер зерна в полученной по базовой технологии поковке достигает 2...3 мм, что может пагубно сказаться на способности материала сопротивляться развитию трещин, поскольку превышение температуры деформации приводит к выделению по границам растущих β-зёрен облегчающих рост и продвижение этих трещин прослоек α'-фазы [10]. Образование α'-прослоек образуется тем, что границы зёрен являются областями с повышенным уровнем напряжений сжатия, а удельный объём α'-титана на ≈ 0,17 % меньше, чем β-тиита при 20 °C, и на ≈ 1,5...5 % меньше при 950...550 °C [1]. Поэтому, хотя содержание β-фазы в псевдо-α сплаве OT4-1 относительно невелико, и составляет ≈ 3 % [15], этого достаточно для ухудшения трещинностойкости материала поковки, а значит, этот фактор является важным в балансе фазовых и структурных превращений.

Выводы

1. Приближение размеров и формы заготовки в плане к проекции рабочей части штампа уменьшает локализацию деформационных процессов при формообразовании штампованный поковки, вследствие чего уменьшается неравномерность температурных полей в металлическом материале и снижается его деформационный разогрев. При этом применение специальных видов оборудования и изменение оснастки не требуется.
2. Изменение формы заготовок и снижение температуры их нагрева с 910 °C до 880 °C, то есть всего на 30 °C, позволяет снизить максимальную температуру деформируемого материала примерно на 70 °C, то есть за счёт уменьшения неравномерности деформационных процессов даёт кумулятивный эффект.

3. Ограничение деформационного разогрева материала поковки из сплава ОТ4-1 в пределах не более 1020 °C позволяет удержать его от образования недопустимых типов структур и избыточного размера зерна, как следствие – от выделения прослоек α'-фазы по границам растущих β-зёрен и вызываемой ими β- хрупкости.

Список источников

7. Галкин В.И., Головкин П.А., Фесенко С.А., Давыдкина Е.А. / О повышении качества поковок Ш-образных кронштейнов из сплава ВТ14 / -М.: Титан, № 2, 2021. С. 40...44.

