Физический механизм работы палладий-бариевых материалов катодов СВЧ приборов

^{*}В.И. Капустин, И.П. Ли, А.В. Шуманов, С.О. Москаленко, ^{*}А.А. Буш, ^{**}Ю.Ю. Лебединский Москва, АО «Плутон», ул. Нижняя Сыромятническая, 11 ^{*}Москва, Московский технологический университет (МИРЭА), пр. Вернадского, 78 ^{**}Московская обл., Долгопрудный, Московский физико-технический институт, Институтский пер., 9 E-mail:i.li@pluton.msk.ru, kapustin@mirea.ru

Методами рентгеноструктурного анализа высокого разрешения, электронной спектроскопии для химического анализа и спектроскопии характеристических потерь энергии электронов исследованы Pd-Ba катодные материалы. Сформулирован физический механизм работы палладий-бариевых катодов CBЧ приборов.

Physical Operating Principles of Palladium-Barium Cathodes Materials for Microwave Devices. V.I.Kapustin, I.P.Li, A.V.Shumanov, S.O.Moskalenko, A.A.Bush, Yu.Yu.Lebedinsky. By using of the X-ray diffraction with high resolution, the electron spectroscopy for chemical analysis and the electron characteristic energy loses methods, the Pd-Ba cathodes was investigated. The operation principles of the Pd-Ba cathodes materials foe microwave devices were formulated.

Палладий-бариевые катодные материалы представляют собой композицию из порошковPd + (2-5)%Pd₅Ba. Палладий-бариевые катоды широко применяют в CBЧ ЭВП, прежде всего в магнетронных усилителях и генераторах. Рабочая температура катодов лежит в интервале 300-700 °C, при этом катод подвергается электронной бомбардировке со средней мощностью 5-15 BT/cm².Эмиссионные свойства Pd-Ba катодов зависят от технологических параметров их изготовления и активирования в приборах. Чувствительность свойств изначально двухфазных Pd-Ba катодов к температуре и длительность времени активирования свидетельствует о протекании в катодном материале физико-химических процессов, сопровождающихся формированием в материале новых фаз, собственно, и определяющих их эмиссионные свойства.

Известно, что исходные фазыРd и Pd₅Ba, в соответствии с установленными физикохимическими закономерностями эмиссионных свойств чистых металлов и сплавов [1], не могут обеспечить сочетание значений коэффициента вторичной электронной эмиссии σ и работы выхода ф, требуемых для катода магнетрона. Поэтому в настоящее время распространенными являются представления о «пленочном» механизме работы Pd-Ba катода [2]. Согласно данной модели, на поверхности катода формируется либо моноатомная пленка бария, либо пленка «слой кислорода - слой бария», которые снижают потенциальный барьер на поверхности катодного материала, снижая тем самым величину о и увеличивая величину о. Однако, вопервых, для формирования пленки бария на поверхности катода из-за низкого значения энергии активации поверхностной диффузии не требуется столь значительное время активирования катода при достаточно высокой температуре и, во-вторых, само существование таких пленок в отсутствие внешнего потока бария при температуре выше 700 °C невозможно ввиду испарения бария с поверхности или взаимодействия бария с кислородом из газовой фазы прибора [3]. В то же время существование пленок типа «слой кислорола - слой бария» в магнетронах при повышенной температуре и наличии электронной бомбардировки поверхности катода невозможно из-за эффекта электронно-стимулированной десорбции пленок типа «слой кислорода – слой щелочного/щелочноземельного/редкоземельного металла» [4].

Было установлено [5], что после активирования Pd-Ba катода при температуре $1000 \, ^{\circ}$ C в течение 8 ч в вакууме $1 \cdot 10^{-7}$ Па на поверхности катода формируются «бугорки» со средними линейными размерами 0.5-1 мкм. В то же время активирование катода при температуре $900 \, ^{\circ}$ C не приводит к образованию «бугорков», при этом сам катод не обладает требуемыми

эмиссионными свойствами. Исследование элементного состава «бугорков» показали, что они содержат барий, палладий и значительное количество кислорода. Это дает основание предположить, что поверхность катодного материала после активирования состоит из фаз Pd и Pd₅Ba, а также фазы BaO. При этом именно кристаллиты BaO, содержащие оптимальную концентрацию кислородных вакансий, могут обеспечить требуемые значения σ и ϕ Pd-Ba катода [6]. Так как вакуум в приборах при активировании катодов достаточно высокий, а парциальный состав его невоспроизводим, то кислород из остаточных газов в приборе не может быть источником формирования кристаллитов BaO при активировании катодов. Поэтому вопрос о механизме формирования эмиссионно-активных фаз на поверхности палладий-бариевых катодов остается открытым.

Целью данной работы является исследование физического механизма работы палладийбариевых катодов, а именно, исследование источника и роли кислорода в формировании фаз, прежде всего фазы BaO, ответственных за эмиссионные свойства катодов.

Для изготовления катодных материалов использовали Ва металлический (ТУ 48-4-465-85) и Рd порошкообразный марки ПдАП-1 (ГОСТ 14836-82) фракции 20-45 мкм. Интерметаллид Pd₅Ba выплавляли в электродуговой печи с нерасходуемым электродом в среде очищенного аргона. После выплавки интерметаллид размалывали в шаровой мельнице и агатовой ступке, просеивали на ситах. Для изготовления катодов использовали фракцию интерметаллида 20-45 мкм. Катодные материалы прессовали и спекали в вакууме при 1050 ⁰C в течение 2ч.

Исследования образцов материалов методом рентгеноструктурного анализа (PCA) высокого разрешения с внутренним Gеэталоном показали, что компоненты Pd-Ba катодовимеют нанокристаллитную структуру, при этом размеры кристаллитов по различных кристаллографическим направлениям могут сильно различаться и зависят от технологической предыстории материалов. Технологическая предыстория компонентов катодов определяются не только наноразмерностью кристаллитов, но и типом и концентрацией растворенных в них микропримесей. Исследования образцов катодных материалов методом электронной спектроскопии для химического анализа (ЭСХА) показали, что технологическая предыстория компонентов и собственно катодных материалов определяет тип и содержание микропримесей в сформировавшихся нанокристаллитах. На рис. 1 приведена корреляционная диаграмма между отклонением у= Δ а параметра кристаллической решетки Pd от значения для массивного образца палладия, у которогоа=3.8902Å,и суммарным относительным содержанием кислорода и гидроксильных групп в образцах, определенных методом ЭСХА $x = {Pd[0] + Pd[H, 0]}/Pd$.

Рис. 1. Корреляционная диаграмма в координатах $y = \Delta a$; $x = \{Pd[0] + Pd[H, 0]\}/Pd$.

На рис. 1 образцы 1 и 2 соответствуют различным партиям порошков Pd, полученным с завода-изготовителя. Образцы 3 и 4 – это образцы 1 и 2 соответственно, но после вакуумного отжига при температуре 1000 ⁰C в течение 30 мин. Образец А получен переплавкой Pdu Ba с избытком Pd, составляющем 8%, при общей массе навески 50 г, а образец В – переплавкой Pdu

Ва с избытком Pd, составляющем 8%, при общей массе навески 100 г. Отличие образцов A и B состоит в том, что скорость охлаждения образца B при кристаллизации меньше, чем образца A. Отличие образцов 1-4 и образцов A и B состоит в том, что первые по данным ЭСХА практически не содержат кристаллитов Pd[H, O], а вторые содержат их в заметном количестве.Прямая I – линейная экстраполяция изменения параметра решетки палладия при содержании в нем только примесей кислорода, нелинейная криваяII – изменение параметра решетки палладия при наличии в нем примесей кислорода и водорода.

Анализ результатов рис. 1 показывает, что вакуумный отжиг палладия, как и следовало ожидать, снижает содержание кислорода в палладии. Однако в кристаллитах избыточного палладия в образцах материалов А и В наблюдается повышенное содержание кислорода, в том числе в составе гидроксильных групп. Именно данный кислород ответствен за формирование кристаллитов ВаО в палладий-бариевых катодных материалах по схемам

$$\{Pd[0] + Pd[H,0]\} + Pd_5Ba \Longrightarrow BaO_{(1-x)} \tag{1}$$

$$\{Pd[0] + Pd[H,0]\} + Pd_5Ba \Longrightarrow Ba_{(1-y)}O_{(1-x)}Pd_y$$
(2)

Данный механизм формирования кристаллитов BaO в палладий-бариевых катодных материалах объясняет то обстоятельство, что в процессе разработки и использования палладий-бариевых катодов выплавка фазыPd₅Babcerдa осуществляется с избытком палладия, что обеспечивает формирование запаса кислорода, необходимого для протекания процессов (1) и (2).

При формировании в катодном материале кристаллитов оксида бария $BaO_{(1-x)}$, содержащего кислородные вакансии, может иметь место растворение в данных кристаллитах атомов палладия с формированием фазы $Ba_{(1-y)}O_{(1-x)}Pd_y$. Кристаллиты этих фаз действительно наблюдаются методов ЭСХА.

Исследование электронной концентрации ф различных фазах катодных материалов были проведены нами методом спектроскопии характеристических потерь энергии электронов (ХПЭЭ). На рис. 2 в качестве примера приведен спектр ХПЭЭ для образца В, описанного выше.

Спектр на рис. 2 для повышения чувствительности получен численным дифференцированием спектра распределения вторичных электронов вблизи пика упруго отраженных электронов при энергии первичных электронов 1000 эВ. В спектре выделены Гауссовы пики, пронумерованные в порядке возрастания энергии потерь, с использованием стандартного пакета программ спектрометра. Ширина всех пиков на половине высоты составляет 1,20 – 1,40 эВ.

Характеристические потери в образцах катодных материалов обусловлены возбуждением объемных и поверхностных плазменных колебаний электронов в зонах проводимости кристаллитов фаз Pd₅Bau Pd, а также объемных и поверхностных плазменных

колебаний электронов на уровнях кислородных вакансий в кристаллитах фаз $BaO_{(1-x)}$ и фазы $Ba_{(1-y)}O_{(1-x)}Pd_y$.При этом потери энергии электронов в каждой фазе в общем случае составят

$$\Delta E = n_1 \Delta E_{vol.} + n_2 \Delta E_{surf.},\tag{3}$$

где n_1 и n_2 – целые числа, $\Delta E_{vol.}$ и $\Delta E_{surf.}$ – соответственно энергии возбуждения объемного и поверхностного плазмонов. Для оксидных фаз $BaO_{(1-x)}$ и $Ba_{(1-y)}O_{(1-x)}Pd_y$ они определяются известными соотношениями [7]

$$\Delta E_{vol.} = \sqrt{\frac{e^{*2}N_V\hbar^2}{\varepsilon\varepsilon_0 m^*}}, \Delta E_{surf.} = \sqrt{\frac{e^{*2}N_S\hbar^2}{2\varepsilon\varepsilon_0 m^*}}$$
(4)

Здесь N_V и N_S соответственно - концентрации кислородных вакансий в объеме и на поверхности оксидов, m^* - эффективная масса электронов кислородный вакансий, e^* - эффективный заряд электронов, \hbar – постоянная Планка, ε – диэлектрическая проницаемость оксида, ε_0 - диэлектрическая постоянная.

Для фазРd₅Bau Pd, имеющих металлический тип проводимости, соотношения (4) напрямую неприменимы. Однако в рамках одноэлектронной модели металлов рассмотрение плазменных колебаний приводит к соотношениям (4), если формально положить $\varepsilon = 1$, e^{*}/e=1, m^{*}/m=1. При этом рассчитанные по соотношениям (4) значения электронной концентрации, конечно, не будут равны их истинным значениям, но позволяют оценить изменение концентрации электронов в зоне проводимости данных фаз при наличии в них примесей, например кислорода и водорода, концентрации которых зависит от технологии материалов. В таблице 1 в качестве примера приведена схема расшифровки спектра, приведенного на рис.2.

N⁰	Е, эВ	BaO _(1-x)			$Ba_{(1-y)}O_{(1-x)}Pd_y$		Pd		Pd ₅ Ba	
		Ряд 1	Ряд 2	Ряд З	Ряд 4	Ряд 5	Ряд б	Ряд 7	Ряд 8	Ряд 9
-	0	0 surf.			0 surf.		0 surf.		0 surf.	
1	3.49	1 surf.								
2	4.24				1 surf.					
3	4.99		0s.+1v.							
4	5.90					0s.+1v.				
5	7.00	2 surf.					1 surf.			
6	7.77								1 surf.	
7	8.49		1s.+1v.		2 surf.					
8	9.50			0s.+2v.				0s.+1v.		
9	10.57	3 surf.				1s.+1v.				0s.+1v.
10	11.69		2s.+1v.							
11	12.84				3 surf.					
12	13.98	4 surf.		1s.+2v.			2 surf.			
13	14.68					2s.+1v.				
14	15.50		3s.+1v.						2 surf.	
15	16.55				4 surf.			1s.+1v.		
16	17.32	5 surf		2s.+2v.		3s.+1v.				
17	18.02									1s.+1v.
18	19.00		4s.+1v.							
19	20.03			3s.+2v.						
20	20.99	6 surf.			5 surf.		3 surf.			
21	21.83					4s.+1v.				
22	22.69		5s.+1v.							
23	23.76			4s.+2v.				2s.+1v.	3 surf.	
24	24.96	7 surf.								
25	25.98				6 surf.	5s.+1v.				2s.+1v.

Таблица 1. Схема расшифровки спектрарис.2

Для каждой регистрируемой фазы в таблице 1 в соответствии с соотношением (3) выделяются несколько рядов плазменных потерь, по которым с использованием соотношений

(4) определяются электронные концентрации в фазах $Pd_5Bau Pd$ и концентрации кислородных вакансий в фазах $BaO_{(1-x)}$ и $Ba_{(1-y)}O_{(1-x)}Pd_y$. Значения их приведены в таблице 2. При расчете концентрации электронов в фазах $Pd_5Bau Pd$ значения эффективного заряда и эффективной массы электронов были приняты, как для свободных электронов. Для фаз $BaO_{(1-x)}$ и $Ba_{(1-y)}O_{(1-x)}Pd_y$ эти значения были определены нами по методике [7] методом оптического поглощения.

При соотнесении рядов 1-3, 3-5, 6-7 и 8-9 соответствующим фазам были учтены следующие обстоятельства. Протекание реакций образования кристаллитов оксида бария по схемам (1) и (2) определяется только термодинамикой процессов, при этом различие значений энергии Гиббса образования фаз $BaO_{(1-x)}$ и $Ba_{(1-y)}O_{(1-x)}Pd_y$ будет незначительным из-за малости концентрации палладия, растворенного в кристаллитах оксида бария. Поэтому и концентрации кислородных вакансий в указанных фазах должны быть практически одинаковыми. Электронная концентрация в фазе Pd_5Ba должна бать выше, чем в фазе Pd, так как Pd имеет полностью заполненную d-оболочку, а Ba имеет два s-электрона на внешней оболочке. При этом соотношение значений электропроводности указанных фаз может быть иным из-за различия конфигураций поверхности Ферми в этих фазах, различия длины свободного пробега электронов относительно рассеяния.

N⁰	Фаза Параметр		Фаза В	Фаза А	Катодный	
					материал	
					Рd+5% фазы В	
		$\Delta E_{\text{vol.}}, \Im B$	9,47	9,66	9,47	
1	Pd	$\Delta E_{surf.}$, $\Im B$	7,06	7,00	7,01	
		N_{V} M ⁻³	6,51E+28	6,77E+28	6,50E+28	
		N _S , м ⁻³	7,24E+28	7,11E+28	7,13E+28	
		$\Delta E_{\text{vol.}}, \Im B$	10,58	10,65	10,58	
2	Pd ₅ Ba	$\Delta E_{surf.}$, $\Im B$	7,80	7,84	7,65	
		N _{V,} м ⁻³	8,12E+28	8,23E+28	8,13E+28	
		N _S , м ⁻³	8,84E+28	8,93E+28	8,50E+28	
		$\Delta E_{\text{vol.}}, \Im B$	5,01	5,32	5,02	
3	BaO _(1-x)	$\Delta E_{surf.}$, $\Im B$	3,51	3,53	3,48	
		N _{V,} м ⁻³	1,762E+25	1,99E+25	1,77E+25	
		N _S , м ⁻³	1,73E+25	1,75E+25	1,70E+25	
		$\Delta E_{\text{vol.}}, \Im B$	6,35	6,02	6,25	
4	$Ba_{(1-y)}O_{(1-x)}Pd_y$ $\Delta E_{surf.}$ $3B$		4,09	4,42	4,00	
		N _{V,} м ⁻³	1,97E+25	1,77E+25	1,91E+25	
		N _S , м ⁻³	1,63E+25	1,91E+25	1,57E+25	

Таблица 2. Сводные данные по электронным концентарциям и концентрациям кислородных вакансий в различных образцах

Величина концентрации кислородных вакансий в фазах $BaO_{(1-x)}$ и $Ba_{(1-y)}O_{(1-x)}Pd_y$, сформировавшихся в палладий-бариевом катоде на этапе его изготовления, меньше концентрации кислородных вакансий в фазе $BaO_{(1-x)}$, которая, как было показано в работе [7], формируется в металлопористом и скандатном катоде. А это означает [6], что величина σ дляPd-Ba катода должна быть больше, а величина ϕ – меньше, чем указанные параметры для металлопористого или скандатного катодов, что в действительности и наблюдается на практике [2, 5].

Таким образом, результаты исследований позволили установить, что за формирование эмиссионных свойств Pd-Ba катодов ответственны кристаллиты BaO, формирующиеся на этапе изготовления и активирования катода, при этом «поставщиком» кислорода для образования данных кристаллитов являются кристаллиты Pd, особенно те, которые прошли электродуговую переплавку в качестве избыточной фазы при синтезе интерметаллида Pd₅Ba.

Литература

- 1. Савицкий Е.М., Буров И.В., Литвак Л.Н., Пирогова С.В. Электрические и эмиссионные свойства сплавов. М.: Наука, 1978. 269 с.
- 2. Дюбуа Б.Ч., Култашев О.К., Поливникова О.В. Эмиссионная электроника, нанотехнология, синергетика (к истории идей в катодной технологии) // Электронная техника. Сер. 1. СВЧ-техника. 2008. Вып. 4 (497). С. 3-22.
- 3. Фоменко В.С. Эмиссионные свойства материалов: справочник. Издание четвертое, переработанное и дополненное // Киев: Наукова думка, 1981. 340 с.
- 4. Агеев В.Н., Бурмистрова О.П., Кузнецов Ю.А. Десорбция, стимулированная электронными возбуждениями // УФН. 1989. Том 158, вып. 3. С. 389-420.
- 5. Ли И.П. Формирование структуры и физических свойств катодов для разработки малогабаритных магнетронов с безнакальным запуском // Дисс. канд. техн. наук: 01.04.07. М.: МГТУ им. Н.Э. Баумана. 2012. 123 с.
- 6. Капустин В.И. Физико-химические основы создания многокомпонентных оксидсодержащих катодных материалов // Перспективные материалы. 2000. № 2. С. 5 17.
- Капустин В.И., Ли И.П., Шуманов А.В., Лебединский Ю.Ю., Заблоцкий А.В. Физический механизм работы скандатных катодов СВЧ приборов // ЖТФ. 2017. Том 87. Вып. 1. С. 105-115.

Кристаллическая и электронная структура компонентов палладий-бариевых катодных материалов

^{*}В.И. Капустин, И.П. Ли, А.В. Шуманов, С.О. Москаленко, ^{*}А.А. Буш, ^{**}Ю.Ю. Лебединский Москва, АО «Плутон», ул. Нижняя Сыромятническая, 11 ^{*}Москва, Московский технологический университет (МИРЭА), пр. Вернадского, 78 ^{**}Московская обл., Долгопрудный, Московский физико-технический институт, Институтский пер., 9 E-mail:i.li@pluton.msk.ru, kapustin@mirea.ru

Методом рентгеноструктурного анализа высокого разрешения определены размеры и кристаллографическая ориентация нанокристаллитов фаз Pd и Pd₅Ba в палладий-бариевом катоде. Методом электронной спектроскопии для химического анализа исследованы химическое состояния Ba и Pd в катодном материале и определен фазовый состав материала, в том числе наличие в фазах растворенных микропримесей.

The Crystalline and Electron Structure of the Palladium-Barium Cathode Material Components. V.I. Kapustin, I.P. Li, A.V. Shumanov, S.O. Moskalenko, A.A. Bush, Yu.Yu.Lebedinsky. ByusingofhighresolutionX-raydiffractionmethod, the dimensions and crystallographic orientation of PdandPd₃Ba nanocrystal phases in the Pd-Ba cathodes was investigated. Byusing of the electron spectroscopy for chemical analysis the chemical states of BaandPd in the Pd-Ba cathodes was investigated and the phases and micro impurities content of materials was determined.

Палладий-бариевые катодные материалы представляют собой композицию из порошков палладия и интерметаллида Pd₅Ba с содержанием бария в композиции 0.5-2.0 %. Pd₅Ba получают электродуговой переплавкой бария и палладия в среде аргона с избытком палладия в количестве 5-8 % по отношению к стехиометрии соединения.

Катоды СВЧ приборов формируют либо прессованием и прокаткой композиции «палладий – интерметаллид» в ленту толщиной 200 мкм, которая используется в качестве